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1 Glauber Model
Reaction Cross Section

The total reaction cross section σR is calculated in Glauber model as:

σR =

∫
[1 − T (b)] db (1)

σR = 2π
∫

b · [1 − T (b)]db (2)

where T (b) is so called transparency function, b is the impact parameter, C(E)
represents the Coulomb correction.

Charge Changing Cross Section

The total charge changing cross section is calculated as:

σCC =

∫
[1 − TCC(b)] db (3)

Neutrons Removal Cross Section

The neutrons removal cross section is calculated as:

σ−xn = σR − σCC (4)

1.1 Phase Shift Function
The transparency functions are expressed as:

T (b) = e−2χ(b) (5)

Tcc(b) = e−2χcc(b) (6)

where χi j(b) is the phase shift function
The following two approximations are used to calculate the transparency func-

tions:
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1.1.1 Optical-limit Approximation

All four components are calculated separately, χpp(b), χpn(b), χnp(b),χnn(b) are the
phase shift funtion for all possible proton and neutron combinations of projectile
and target.

χi j(b) =
∫ ∫

Γi j(b + s − t, E) · ρz
Pi(s) · ρz

T j(t) dsdt (7)

where ρz
Pi(s), ρz

T j(s) are z-integrated nucleon densities distribution of proton
and neutrons of the projectile and the target, respectively. Γ(b + s − t, E) is the
so-called profile function.

χ(b) =
∑
χi j(b) (8)

χcc(b) = χpp(b) + χpn(b) (9)

1.1.2 Modified Optical-limit Approximation

Following the procedure in [1], the Modified Optical-Limit(MOL) phase shift
function is calculated as:

χ(b) =
1
2

∫
ρz

Pp(s)ds
(
1 − e

(
−

∫
Γpp(b+s−t)·ρz

T p(t)dt−
∫
Γpn(b+s−t)·ρz

Tn(t)dt
))

+
1
2

∫
ρz

Pn(s)ds
(
1 − e

(
−

∫
Γpn(b+s−t)·ρz

T p(t)dt−
∫
Γpp(b+s−t)·ρz

Tn(t)dt
))

+
1
2

∫
ρz

T p(s)ds
(
1 − e

(
−

∫
Γpp(b+s−t)·ρz

Pp(t)dt−
∫
Γpn(b+s−t)·ρz

Pn(t)dt
))

+
1
2

∫
ρz

Tn(s)ds
(
1 − e

(
−

∫
Γpn(b+s−t)·ρz

Pp(t)dt−
∫
Γpp(b+s−t)·ρz

Pn(t)dt
))

(10)

1.1.3 Four-component MOL

To calculate MOL type calculation [1] in four components (MOL4C) the phase
shift functions are calculated as:

χi j(b) =
1
2

∫
ρz

Pi(s)ds
(
1 − exp

[
−

∫
Γi j(b + s − t) · ρz

T j(t)dt
])

+
1
2

∫
ρz

T j(t)dt
(
1 − exp

[
−

∫
Γi j(b + t − s) · ρz

Pi(s)ds
]) (11)
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1.1.4 Z-Integrated density

The z-integrated density is calculated using the following equations:

ρz
i (b) =

∫ ∞

−∞

ρi(
√

b2 + z2) · dz (12)

in practice the integration boundaries are set to predefined maximum radius
value.

ρz
i (b) =

∫ zmax

zmin

ρi(
√

b2 + z2) · dz (13)

1.2 Dirac Density cases
If target and projectile are both either proton or neutron the code returns the cor-
responding nucleus-nucleus cross section.

In cases when target or projectile is proton(or neutron) with Dirac Density
function type the following equations are used to calculate phase shift function:

1.2.1 Optical Limit Approximation

χi j(b) =
∫ ∫

Γ(b + s − t) · ρz
P,T (s) · δT,P(t) dsdt (14)

χi j(b) =
∫
Γ(b + s) · ρz

P,T (s)ds (15)

in case of Zero-Range approximation:

χi j(b) = σNN(E) · ρz
P,i(b) (16)

1.2.2 Modified Optical Limit Approximation + Finite Range

χ(b) =
∫
δT (t)dt

(
1 − exp

[
−

∫
Γ(b + t − s) · ρz

P(s)ds
])

(17)

χ(b) =
(
1 − exp

[
−

∫
Γ(b + s) · ρz

P(s)ds
])

(18)

in case of Zero-Range approximation:

χ(b) =
(
1 − exp

[
−σNN(E) · ρz

P(b)
])

(19)
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2 Nuclear Densities

2.1 Nuclear density definition
Input:

• AiZi - Number of nucleons and the proton number of the target or projectile.

• function type and parameters.

The projectile and target nuclear densities are described in form:

ρi(⃗r) = f (⃗r, p1, p2, ...) (20)

i = t or p for the target and projectile density, f (...) is the chosen function type.
p1, p2... are parameters of the function.

2.2 Nuclear Density Function Types
2.2.1 Fermi type

Number of free parameters = 3

ρ(r) =
ρ0 · (1 + wr2/c2)

1 + exp( |r|−c
z )

c - radius parameter , z - diffusion parameter, w - additional parameter, by default
equals to zero. ρ0 is the normalization parameter.

2.2.2 Harmonic Oscillator type (HO)

Number of free parameters = 2

ρ(r) = ρ0 ·

(
1 + a ·

r2

r2
0

)
· exp

(
−

r2

r2
0

)
a - width parameter, r0 - radius parameter, ρ0 - normalization

2.2.3 Gaussian Type

Number of free parameters = 1

ρ(r) = ρ0 · exp
(
−

r2

2 · w2

)
w - width parameter, ρ0 - normalization
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2.2.4 Dirac Type

Number of free parameters = 0

2.3 Normalization
The nuclear density functions are normalized using the normalization parameter
as: ∫

ρi(⃗r) · d3r⃗ = Ai (21)

4π
∫

r2 · ρi(r) · dr = Ai (22)

2.4 Root-Mean-Squared Radius

R2
rms =

∫
r⃗2ρi(⃗r) · d3r⃗ (23)

3 Predefined nuclear densities
For certain nuclei predefined nuclear densities are available. The density function
parameters are selected to reproduce the experimental root-mean-square charge
radius and the saturation density of the proton and neutron distributions.

For nucleus with A < 20 Harmonic-Oscillator (HO) type density is used, ex-
pect proton where we use Dirac type function. For heavier nuclei the 2-parameter
Fermi function is used.

The central total nucleon density is assumed to be 0.166 f m−3. This density is
shared between the protons and neutrons. The proton and neutron central densities
are then calculated as a function of neutron excess using Equations 24, 25.

ρ0p = 0.083042 − 0.059898 ·
N − Z

A
(24)

ρ0n = 0.166084 − ρ0p (25)

The root-mean-square radius of the proton distribu- tion were derived from the
experimental charge radii measured by electron scattering and isotope-shift mea-
surements [5].

The point-like proton radius was calculated from the experimental charge ra-
dius using [7]:

R2
p = R2

ch − R2
proton −

N
Z
· R2

neutron −
3ℏ2

4m2
pc2 (26)
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where Rch is the experimental charge radius, Rproton is the mean-square charge
radius of proton, Rneutron is the mean-square charge radius of neutron and the last
term is the Darwin-Foldy term.

The used values for the mean-suare charge radii of proton and neutron are
0.88 f m and −0.0935 f m, taken from [6].

The radius of the neutron distribution is then corrected for the neutron skin.
The skin thickness is calculated using Eq. 27.

S = 0.9 ·
N − Z

A
− 0.03 (27)

where S is the neutron thickness in f m unit as a function of neutron excess.

4 Profile Function
The profile function Γ(b + s − t, E) is parametrized as:

Γ(r, E) =
1
2
·

1
2πβ2σNN(E) · exp

(
−

r2

2β2

)
(28)

σNN is the nucleon-nucleon scattering cross ssection. β is the range parameter
with default constant β = 0.39 f m

Zero-Range Approximation
if β = 0

Γ(r, E) =
1
2
· δ(r)σNN(E) (29)

5 Nucleon-Nucleon Total Cross Sections
The σNN is taken from the measured proton-proton and proton-neutron scattering
cross-sections. The parametrization is used to fit the measured data, see Figure
5.2. The in-medium effects on nucleon-nucleon scattering can be taken into ac-
count using the Fermi-motion effect, see following sections.

5.1 Fermi-motion Effect in σNN

Instead of using free nucleon-nucleon scattering cross section σNN(E), one can
choose the in-medium nucleons scattering cross section (σeff

NN) which can be ob-
tained by incorporating the Fermi motion of in-medium nucleons into the σNN(E).
This option provides a good prescription to calculate cross sections in the inter-
mediate energy region (from 30 to a few hundreds MeV/nucleon) using Glauber
model.The momentum distribution of nucleons in the nucleus is assumed to be
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the Gaussian according to the Goldhaber model. The momentum distribution of
a projectile nucleon relative to a target nucleon parallel to the beam axis (prel) is
expressed as [2]:

D(prel) =
exp

(
−(prel − ppro j)2/2

(〈
p2

〉P
+

〈
p2

〉T
))

√
2π

(〈
p2〉P
+

〈
p2〉T

)
Here,

〈
p2

〉P
and

〈
p2

〉T
denote the mean-square momenta of the projectile and tar-

get nucleon respectively, and pproj is the momentum of a nucleon with the same
velocity as the projectile nucleus. For stable nuclei, the nominal experimental
value

√〈
p2〉 = 90 MeV/c extracted from projectile-fragmentation data is assumed

by default. Using Eq. (30), the momentum-averaged total cross section of nucle-
ons in the nucleus can be written [2] as:

σeff
NN =

∫ +∞

−∞

dprelσNN(prel)D(prel) (30)

5.2 Fermi Momentum from density
Fermi energy and momentum is calculated from the nucleon density function as:

E f (r) =
ℏ2

2M
· (3πρ(r))2/3 (31)

p f (r) =
√

2ME f (r) (32)

where ρ(r) is the proton or neutron debnsity of the nucleus
To be used with the z-integrated densities, the average z-Fermi energy and

momentum is calculated as:

Ez
f (b) =

∫
E f (r)ρi(

√
b2 + z2) · dz∫

ρi(
√

b2 + z2) · dz
(33)

pz
f (r) =

√
2MEz

f (r) (34)

The nucleon-nucleon cross section is then calculated as:

σeff
NN(E, t, s) =

∫ +∞

−∞

dprelσNN(prel)D(prel, t, s) (35)

with D from Eq.30 and mean-square-momenta are not constant but calculated
as: 〈

p2
〉P

(t) = Cp f · pz
f (t) (36)〈

p2
〉T

(s) = Cp f · pz
f (s) (37)
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Figure 1: The measured nucleon-nucleon cross section (points) and the fit (lines)
used in the library.
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6 Coulomb Correction
The following Coulomb corrections are implemented in the code:

Classic correction

The cross section,ie from Eq. 1, is multiplied by the correction factor C calculated
as:

C(E) = 1 −
1.44 · Zp · Zt

bmax · Ecm
(38)

where bmax is equal to
√
σR(E)/(10.0π), σ is in mb unit.

Sommerfeld correction

The impact parameter b for the transparency function in Eq. 1 and 3 is modified
as:

bc =

√
b2 + d2

0/4 + d0/2 (39)

bc is Coulomb deflected impact parameter, d0 is the closest distance at zero impact
parameter, b is impact parameter at infinity

d0 = 2 · η · o =
αℏcZ1Z2

0.5mv2 (40)

η = αZ1Z2/β is the Sommerfeld parameter
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7 Numerical Calculations and Precision
The NUREX code uses the Gaussian quadrature methods to calculate integrals.
The type and the order of the integration can be changed at compile-time. For the
adaptive quadrature we use the Gauss-Kronrod method.

The limits of the integration over the impact parameter and the radius are de-
termined from the root-mean-squared radius of the nucleon densities. The integral
23 is calculated using the adaptive quadrature.

The z-integrated nucleon densities in profile functions, see Eq. 7, Eq. 10,
are calculated at different radii and the z-integrated density is interpolated with
cubic spline between the calculated points. By default the z-integrated density is
calculated at 100 points between 0 and 3.5 · Rrms. The accuracy of z-integrated
proton density of 12C reconstruction is shown in Fig. 7. On the left the density
and z-integrated density is shown and on the right absolute difference between
interpolated and precise value is shown for multiple number if interpolate points.

In case of finite range calculation the 2-dimensional integration over the range
is calculated either by using the Gauss-Hermite quadrature. The integral over
range can be pre-calculated and stored in cubic splines for faster calculations. This
precalculation can be disabled at compile-time. The accuracy of z- and range-
integrated proton density of 12C reconstruction is shown in Fig. 7. On the left
the density and z-integrated density is shown and on the right absolute difference
between interpolated and precise value is shown for multiple number if interpolate
points.

The profile functions itself are evaluated as a cubic splines for the calculation
of the cross-section, see Eq 1. The number of interpolated points can be change at
the compile time. The integration in 1 and 3 is done using the adaptive quadrature.

In case of calculation with the Fermi Motion correction, the caculation of Eq.
30 depends on the limit of integration. The limits where the function is relavant are
taken as ±5.0 · σp. Where σp is squared quadratic sum of mean-square momenta
of the projectile and the target, see Eq. 30. If the lower limit does not cross 0.0
to negative values Gauss-Hermite quadrature is used, otherwise in case of lower
energies and bigger the slower adaptive quadrature is used.
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Figure 2: On the left: calculated z-integrated density (green) and density dis-
tribution(blue). On the right absolute accuracy of cubic spline interpolation and
z-integration.
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Figure 3: On the left: calculated z- and ranged-integrated density (green) and den-
sity distribution(blue). On the right absolute accuracy of cubic spline interpolation
and z- + range-integration.
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8 Charge-Changing Corrections
The charge-changing cross section is calculated using Eq. 3. This corresponds to
the direct proton-induced reactions. To take into account indirect charge-changing
reactions the following corrections are used:

• PRC82 - empirical scaling

• evaporation - neutron-induced charged particle evaporation

• none - no correction, only proton-induced part is calculated

8.1 Empirical correction factor
The measured charge-changing cross section were compared to the calculated
cross sections and correction factor was estimated.

σCC(E) = σCCp(E) · f (E) (41)

where f (E) is the correction factor, σCCp is the direct proton-induced charge-
changing cross section

• PRC82 - scaling factor from [8]: f (E) = 1.141 − 6.507 · 10−5 · E

8.2 Charged particle evaporation correction
The indirect charge-changing reaction is assumed to be charged particle evapora-
tion after the neutron only direct reaction.

σCC = σCCp +
∑

i

Pchi · σ−in (42)

where σCC is the total charge-changing cross section, σCCp is the direct proton-
induced charge-changing cross section, Pchi is the charged particle evaporation
probability after the i-neutrons removal reaction σ−in.

8.2.1 Neutrons Removal Cross-Section

The total neutron removals are calculated from the model using Eq. 4. We assume
that

σ−xn =
∑
σ−in (43)
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The ratio of particular neutron removals in Eq. 42 are calculated from the
Glauber model using the Eq. 44.

σ−in =

(
Np

i

) ∫
b · e−2(χpp+χpn)

(
e−2(χnp+χnn)

)Np−i (
1 − e−2(χnp+χnn)

)i
db (44)

where Np is number of neutrons in projectile, i is number of removed neutrons and
the profile functions are calculated using the projectile neutron density distribution
normalized to 1.0.

Optionally neutron removals can be taken from the EPAX v3 parametrization
[11]. The particular removals from EPAX are normalized according to the Eq.
43.
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9 Particle Evaporation

9.1 Particle Evaporation Probability

Pe =

∫ ∞

S e+Vb

ρEx(E)we(E)dE (45)

where S is the particle separation energy Vb is the particle Coulomb barrier, ρEx(E)
is the excitation energy distribution and we(E) is the probability to evaporate par-
ticle e at excitation energy E.

For the calculation of the charged-particle evaporation as used in Eq. 42 the
we above equals to the sum of evaporation probabilities for all possible charged-
particles plus probability to evaporate charge after from the residual after neutron
evaporation:

wch = wn · wch(−n) + w1H + w2H + w3H + w3He + w4He + ... (46)

wn and wi are the neutron ad other particle evaporation probabilities, wch(−n) is
the charge evaporation probability from the residual after the neutron removal
calculated using 45.

For stable and proton-rich nuclei and excitation energy above the evaporation
barrier we can assume wch(E) ≈ 1.0.

9.1.1 Excitation Energy Distribution

The excitation energy distribution is calculated using the Gaimard-Schmidt ap-
proach (optionally Ericson formula) [10]. The input parameters to the Gaimard-
Schmidt formula is the maximum excitation energy Emax by removing a neutron
and number of removed neutrons. A sample excitation distribution for Emax = 40
MeV is shown in Fig. 4. If not specified Emax = 1.0 · E f ermi(0) is taken, where
E f ermi is the Fermi energy of the neutrons calculated using Eq. 31.

9.1.2 Coulomb Barrier

The particle Coulomb barrier is calculated as a maximum of a sum of the nuclear
potential and Coulomb potential of charged particle and residual fragment. Tun-
neling through the barrier is at the moment not taken into account at the moment.

The maximum of the Coulomb barrier Vb is found numerically of the following
equation:

Vb(r) = VC(r) + VN(r) (47)

where VC is the Coulomb potential, VN is the nuclear potential, r is the distance
between the particles.
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Figure 4: Prefragment excitation-energy distribution after removing a-nucleons.
The maximum excitation energy Emax = 40MeV. On the left distribution by the
Gaimard-Schmidt formula, on the right by the Ericson formula.

To speedup the calculation, alternatively to the numerical solution, the Coulomb
barrier can be calculated using the parametrization as described in [18].

9.1.3 Coulomb potential

VC(r) = Z1Z2e2

 1
r r ≥ RC

1
2RC

[
3 − (R/RC)2

]
r < RC

where RC = 1.24R1 + 1.24R2, where Ri is calculated by Eq. 50.

9.1.4 Nuclear potential

Bass80 model [12] is used to calculate nuclear potential

VN(r) = −
R1R2

R1 + R2
Φ(r − R1 − R2) (48)

Φ(s) =
[
0.033 · exp

( s
3.5

)
+ 0.007 · exp

( s
0.65

)]−1
(49)

where R1 and R2 are calculated as:

Ri = Rs

(
1 −

0.98
R2

s

)
f m (i = 1, 2) (50)

Rs = 1.28A1/3
i − 0.76 + 0.8A−1/3

i (51)
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9.1.5 Particle Emission Probability

To probability to evaporate charged particle at given excitation energy in eq. 45
we use the Weisskopf-Ewing formalism:

Γν =
2sν + 1

2πρi(Ex)
2mν
πℏ2

∫ Ex−S−Vb

0
σC(ε)ρ f (E f ) · εdE f (52)

where ρi and ρ f are the level densities in the initial and daughter nucleus, mν is the
mass of the evaporated particle, ε is the kinetic energy of the evaporated particle,
sν is the spin of the evaporated particle and σC is the cross section of the inverse
process.

The probability to evaporate particle e is then calculated as:

we(Ex) =
Γe∑
Γi

(53)

9.1.6 Level Density

The total level density is obtained from the Fermi-gas model for higher excitation
energies and the constant-temperature model for lower excitation energies [19].

Constant-temperature model

ρCT (E) =
exp( E−E0

T )
T

(54)

Fermi-gas model

ρFG(E) =

√
π · exp(2

√
aEe f f )

12a1/4 · E5/4
e f f

(55)

where T is the nuclear temperature, E0 is the energy shift, Ee f f is the effective
excitation energy, a is the level density parameter.

The effective energy Ee f f in Eq. 55 is the excitation energy shifted due to the
pairing energy (∆ = ∆p + ∆n).

Ee f f = Ex − ∆ (56)

with level density parameter:

a = ã
(
1 +
δU · k(Ee f f )

Ee f f
+
δP · h(Ee f f )

Ee f f

)
(57)
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where δU is the shell correction, δP is the effective pairing shift, k is the shell
energy correction damping, h is the effective pairing energy damping parameter
and ã is the the asymptotic level-density paramete.

the asymptotic level-density parameter

ã = 0.073A + 0.095BsA2/3 [MeV−1] (58)

In above Bs is the ratio of the surface of deformed nucleus to spherical nucleus
surface, ie for spherical nuclei Bs = 1. Bs and δU are calculated from the finite
range liquid-drop model [16]. The shell effect damping k(E) is calculating as:

k(E) = 1 − exp(−2.5ãA−4/3 · E) (59)

The effective pairing energy shift δP is calculated as:

δP = −
1
4
∆2g + 2∆ (60)

where ∆ is average pairing gap, g is single-particle level density at Fermi energy.
The pairing dumping h(E) = 1− (1−E/Ecrit) for E < Ecrit otherwise h(E) = 1

9.1.7 Angular Momentum Factor

The angular momentum factor for level density with given spin is:

gJ(J) =
2J + 1
√

8πσ3
exp

(
−

(J + 1/2)2

2σ2

)
(61)

where ρintr(E) is the level density of intrinsic excitation, Kcoll(E) is the collective
enhancement factor.

For the level density including all spins:

gJ(J) =
1
√

2πσ
(62)

and including all magnetic quantum numbers:

gJ(J) = 1 (63)

σ2 is the spin cutoff parameter:

σ2 =
JT
ℏ2 (64)

T is the nuclear temperature
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9.1.8 Rotational enhancement

For nuclei with quadrupole deformation |β2|≥ 0.15 the rotational enhancement is
calculated as [15]:

Krot(Ecorr) =

(σ2
⊥ − 1) f (E) σ2

⊥ > 1
1 σ2

⊥ ≤ 1

f (Ecorr) =
(
1 + exp

(
Ecorr − Ecr

dcr

))−1

(65)

where Ecr = 40MeV and dcr = 10MeV .

σ2
⊥ =

J⊥T
ℏ2 (66)

where J⊥ is the moment of inertia perpendicular to the symmetry axis.
For |β2|< 0.15 the vibrational enhancement is calculated using the above equa-

tions, but spin-cutoff parameter σ2
⊥ is modified as: σ2‘

⊥ = 75 ∗ βe f f ∗σ
2
⊥ [17]. Here

the deformation parameter βe f f = 0.022+ 0.003∆N + 0.0005∆Z [15]. ∆Z and ∆N
are absolute number of protons and neutrons above or bellow closest shell closure.

Nuclear level densities are expressed as[15]:

ρ(E) = Kcoll(E)gJ(J)ρintr(E) (67)

9.1.9 Inverse Cross Section

At excitation energies above the evaporation barrier the inverse cross section is
calculated as [17]:

σC = π(Rgeom + Rα)2(1 −
Vb

ε
) (68)

Rgeom = 1.16(A1/3
d + A1/3

p ) (69)

Rα =

√
ℏ2

2µEcm
(70)

where µ is the relative mass and Ecm = ε(Ad − Ap)/Ad
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10 Nucleon-Nucleon Total Cross Sections Parametriza-
tion

10.1 Proton-Proton Total Cross Sections
Kinetic Energy E < 1 MeV

σpp(E) = 0.0

Kinetic Energy 1 MeV ≤ E < 1.5 MeV

σpp(E) = (−503.08 + 4761.3 · E−0.49562)/2.917

Kinetic Energy 1.5 MeV ≤ E < 2.5 MeV

σpp(E) = ((−503.08 + 4761.3 · E−0.49562)/2.917) · (2.5 − E)

+ (exp[8.3738 − 0.63495(log E) + 0.14901(log E)2 − 0.1317(log E)3

+ 0.033962(log E)4 − 0.0034031(log E)5]) · (E − 1.5)

Kinetic Energy 2.5 MeV ≤ E < 11.05 MeV

σpp(E) = exp[8.3738 − 0.63495(log E) + 0.14901(log E)2

− 0.1317(log E)3 + 0.033962(log E)4 − 0.0034031(log E)5]

Kinetic Energy 11.05 MeV ≤ E < 50 MeV

σpp(E) = exp[13.257 − 5.832(log E) + 1.2461(log E)2

+ 0.07779(log E)3 − 0.074157(log E)4 + 0.0078546(log E)5]

Kinetic Energy 50 MeV ≤ E < 70 MeV

σpp(E) = (exp[13.257 − 5.832(log E) + 1.2461(log E)2

+ 0.07779(log E)3 − 0.074157(log E)4 + 0.0078546(log E)5]) ·
70 − E

20
+ (exp[43.793 − 31.3(log E) − 2.2222(log E)2

− 2.308(log E)3 + 0.5649(log E)4 − 0.037926(log E)5]) ·
E − 50

20
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Kinetic Energy 70 MeV ≤ E < 150.37 MeV

σpp(E) = exp[43.793 − 31.3(log E) − 2.2222(log E)2

− 2.308(log E)3 + 0.5649(log E)4 − 0.037926(log E)5]

Kinetic Energy 150.37 MeV ≤ E < 260.87 MeV

σpp(E) = 0.0076434 + 25.5503

Kinetic Energy 260.87 MeV ≤ E < 411.97 MeV

σpp(E) = exp[ − 8.5816 + 3.3171(log E)

+ 0.29625(log E)2 − 0.056291(log E)3

− 0.024141(log E)4 + 0.0031779(log E)5]

Kinetic Energy 411.97 MeV ≤ E < 600 MeV

σpp(E) = 20.826 + 0.49428 exp[−0.0057621 · E]

Kinetic Energy 600 MeV ≤ E < 680 MeV

σpp(E) = (20.826 + 0.49428 exp[−0.0057621 · E]) ·
680 − E

80

+(47.614 − 125110 exp[−0.015477 · E]) ·
E − 600

80

Kinetic Energy 680 MeV ≤ E < 1000 MeV

σpp(E)47.614 − 125110 exp[−0.015477 · E]

Kinetic Energy 1000 MeV ≤ E ≤ 3000 MeV

σpp(E) = 45.847 + 0.0052698E − 0.000041863E2 + 6.8537 ∗ 10−10E3

Kinetic Energy E > 3000 MeV

σpp(E) = σpp(3000)
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10.2 Proton-Neutron Total Cross Sections
Kinetic Energy E < 0.00882 MeV

σpn(E) = 20360

Kinetic Energy 0.00882 ≤ E < 0.0505 MeV

σpn(E) = −160030 + 168000 · E−0.02494

Kinetic Energy 0.0505 ≤ E < 0.2 MeV

σpn(E) = −163380 + 166200 · E−0.02494

Kinetic Energy 0.2 ≤ E < 0.38 MeV

σpn(E) = (−163380 + 166200 · E−0.02494) ·
0.38 − E

0.18

+(−503.08 + 4761.3E−0.49562) ·
E − 0.2

0.18

Kinetic Energy 0.38 ≤ E < 1.5479 MeV

σpn(E) = −503.08 + 4761.3E−0.49562

Kinetic Energy 1.5479 ≤ E < 2.0 MeV

σpn(E) = (−503.08 + 4761.3E−0.49562) ·
2 − E
0.4521

+

(exp[8.3738 − 0.63495(log E)

+ 0.14901(log E)2 − 0.1317(log E)3

− 0.033962(log E)4 + 0.0034031(log E)5]) ·
E − 1.5479

0.4521

Kinetic Energy 2 MeV ≤ E < 34

σpn(E) = exp[8.3738 − 0.63495(log E)

+ 0.14901(log E)2 − 0.1317(log E)3

− 0.033962(log E)4 + 0.0034031(log E)5]
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Kinetic Energy 34 MeV ≤ E < 598

σpn(E) = exp[7.8594 + 1.291(log E)

− 0.95228(log E)2 + 0.13433(log E)3

− 0.0057926(log E)4 + 0.000092646(log E)5]

(71)

Kinetic Energy 598 MeV ≤ E < 700

σpn(E) = (exp[7.8594 + 1.291(log E)

− 0.95228(log E)2 + 0.13433(log E)3

− 0.0057926(log E)4 + 0.000092646(log E)5]) ·
700 − E

102
+

(exp[ − 112.96 + 25.957(log E)

+ 1.0306(log E)2 − 0.086902(log E)3

− 0.09889(log E)4 + 0.0090234(log E)5]) ·
E − 598

102

Kinetic Energy 700 MeV ≤ E < 981.18

σpn(E) = exp[ − 112.96 + 25.957(log E)

+ 1.0306(log E)2 − 0.086902(log E)3

− 0.09889(log E)4 + 0.0090234(log E)5]

Kinetic Energy 981.18 MeV ≤ E ≤ 2500

σpn = exp[ − 7.3768 + 0.43052(log E)

+ 0.4123(log E)2 + 0.037464(log E)3

− 0.018571(log E)4 + 0.0011638(log E)5]

Kinetic Energy E ≤ 2500

σpn(E) = σpn(2500)

11 Comparison with the experimental data
We benchmarked models against various experimental data from projectile energy
of 30 MeV/u. To choose the best combination of model and corrections we use the

25



Figure 5: Benchmark of the total reaction cross section calculation against exper-
imental data for light stable nuclei. OLA model with Zero Range approximation
and Fermi motion and Coulomb corrections was used. Average deviation is 1.5%

following quantities to estimate how good the model reproduce the experimental
data.

∆ =
|σexp − σgm|

σexp
(72)

χ2
v =

∑
(σexp − σgm)2

v
(73)

11.1 Total Reaction Cross-Section
The models are compared with the experimental data for light stable and neutron-
rich nuclei. Data are taken from [2], [3] [13], [14]

11.1.1 Optical Limit Approximation Model

The Optical Limit Approximation (OLA) model with Zero Range approximation
and with Fermi Motion and Coulomb corrections for light stable nuclei with the
relative deviation is shown in Fig. 5 and for neutron-rich 8Li in Fig. 6. The
average deviation calculated by Eq. 72 is 1.5% over whole range of projectile
energy.
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